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1 Symmetric Functions and Polynomial Invariants

1.1 Symmetric functions and Newton’s identities

Last time, we saw that any symmetric polynomial f is a polynomial in the elementary sym-
metric functions. We took the monomial xn1

1 x
n2
2 · · · in f which is largest, and subtracted

(x1 + · · ·+ xn)n1−n2 · · · .

The key point was that since f is symmetric, n1−n2, n2−n3 and other terms are positive;
if f has a term with xni

i x
nj

j with nj < ni, then f also has x
nj

i x
ni
j .

1.1.1 Newton’s identities

What is x41 + x42 + x43 + · · · ? Look at

f(x) = (x− x1)(x− x2) · · · (x− xn) = xn − e1xn−1 + e2x
n−2 + · · · .

Take the logarithmic derivative, d
dx log f(x) = f ′(x)

f(x) . The log derivative of fg is the log
derivative of f plus the log derivative of g.

So the log derivative of x− x1 is

1

x− x1
=

1

x
+
x1
x2

+
x1
x3

+ · · · .

And we get that the log derivative of f is

n

x
+
x1 + x2 + · · ·

x2
+
x21 + x22 + · · ·

x3
=
p0
x

+
p1
x2

+ · · ·

So f(
∑
pm/x

m+1) = f ′ gives us that

(xn − e1xn−1 + · · · ))(p0
x

+
p1
x2

) = nxn−1 − (n− 1)e1x
n−2 + · · · .

Equating the powers of x, we have

p0 = n, p1 − e1p0 = −(n− 1)e1, p2 − e1p1 + e2p0 = (n− 2)e2
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Example 1.1. Let α, β, γ be the roots of z3 + z + 1. What is α5 + β5 + γ5? We have

p0 = 3, p1 = 0, p2 + p0 = 1, p2 = −1, p3 = −3, p4 = 2.

and p5 + p3 + p2 = 0. These are the coefficients of the polynomial.1

1.2 The discriminant

What about polynomials in x1, . . . , xn invariant under the alternating group, An?

Definition 1.1. A polynomials f in variables x1, . . . , xn is antisymmetric if it changes sign
under elements σ /∈ An.

Proposition 1.1. Suppose f is invariant under An. Then f = g+h, where g is symmetric
and h is antisymmetric.

Proof. Set

g =
f + σf

2
, h =

f − σf
2

.

The polynomial h changes sign if we switch xi and xj , so h is divisible by the polynomial
(x1 − x2)(x1 − x3)(x2 − x3) · · · . So let

∆ =
∏
i<j

(xi − xj).

The invariant functions of An are generated by the symmetric functions e1, . . . , en and
∆. Note that ∆2 is symmetric, so ∆2 is some polynomial in e1, . . . , en. This is called
syzygy.2

Definition 1.2. The discriminant3 of f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 is a2n−2n ∆2.

The discriminant vanishes iff f has multiple roots.

Proposition 1.2. A polynomial f has a multiple root iff f and f ′ have a common factor.

Proof. If f = (x− x1)2 · · · , then f ′ = 2(x− x1) · · ·+ (x− x1)2 · · · , so x− x1 is a common
factor. The converse is an exercise.

1In the 19th century, undergraduate students were expected to be able to calculate things like this
involving symmetric functions.

2This comes from syn, which means together, and zygon, which means yoke. This is not the longest
word in the English language with no vowels; that honor goes to the word rhythms.

3Invariants tend to end with -ant. For example, we have the determinany, the resultant, and the
catalecticant. Professor Borcherds is glad the last of these has fallen out of usage.

2



When do f(x), g(x) have a common factor?

f(x) = amx
n + · · ·+ a0

g(x) = bnx
n + · · ·+ b0

If f, g have a common factor, then f(x)p(x)− g(x)q(x) = 0 for some p, q with deg(p) < n
and deg(q) < m (set p = g/(x− α) and q = −f/(x− α)).

This is a set of linear equations for coefficients of p, q. This has a nonzero solution if
some determinant vanishes. So the coefficients of linear equations are:

am am−1 · · · a0 0 0 0 0
0 am · · · a1 a0 0 0 0
...
0 0 · · · an · · · a2 a1 a0
bn bn−1 · · · b0 0 0 0 0
0 bn · · · b1 b0 0 0 0
...
0 0 · · · bn · · · b2 b1 b0


This matrix with n+m rows is called the Sylvester matrix.

Definition 1.3. The resultant is the determinant of the Sylvester matrix.

Say f, g have a common root at ∞ if am = bm = 0. The resultant equals 0 iff f and
g have a common factor, possibly at ∞. This is the same as saying in geometry that the
projective line is complete.

Example 1.2. The polynomial f(x) = xn − e1x
n−1 + · · · has a multiple root if the

resultant of f, f ′ = 0. ∆ = 0 iff f has tahe multiple root, so ∆ should be a constant times
the resultant.

Example 1.3. When is the cubic curve y2 = x3 + bx + c nonsingular? Curve f(x, y) is
nonsingular if g(x, y) = 0 = fx(x, y) = fy(x, y) has no solutions, where fx is the partial
derivative with respect to x. These are the conditions that 2y = 0 (so y = 0) and 3x2+b = 0
(so g(x) = x3bx+ c = 0); then we need to check if g, g′ have a common root x.

The resultant of x3 + bx+ c and 3x2 + b, is

det


1 0 b c 0
0 1 0 b c
3 0 b 0 0
0 3 0 b 0
0 0 3 0 b


which is 4b3 + 27c2 (up to a sign).
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1.3 The ring of invariants, revisited

Suppose a finite group G acts on a complex vector space V spanned by {x1, . . . , xn}. Recal
that the ring of invariant polynomials is the set of polynomials in x1, . . . , xn invariant under
the action ofG. Is this ring finitely generated (over C)?

Example 1.4. If G = An and V = Cn, then the ring is generated by e1, . . . , en,∆.

In general this can be “mindbogglingly difficult.”4 Hilbert showed that the ring of
invariants is finitely generated over C.

Definition 1.4. The Reynolds operator5 ρ is the average of the group elements,

ρ =
1

|G|
∑
g∈G

g.

The Reynolds operator takes polynomials in C[x,1 , . . . , xn] to invariants.

Example 1.5. Let G = Sn. Then if f = x1, ρ(f) = x1+x2+···+xn
n .

Proposition 1.3. They Reynolds operator has the following properties:

1. ρ(f + g) = ρ(f) + ρ(g)

2. ρ(1) = 1

3. ρ(fg) = ρ(f)ρ(g) if f = ρ(f)

Proof. Exercise.

Theorem 1.1 (Hilbert). If G is finite, the ring of invariants is always finitely generated
over C.

Proof. Look at the ring C[x1, . . . , xn]. This is graded by degree, where deg(xi) = 1. Let
I be the ring of invariants. Then I = C ⊕ I1 ⊕ I2 ⊕ · · · , where Im is the set of invariants
homogeneous of degree m. Look at the ideal generated by I1 ⊕ I2 ⊕ I3 ⊕ · · · . By Hilbert’s
theorem, this ideal is finitely generated. Pick generators i1, . . . , ik of this ideal. We show
that they generate the ring I.

Suppose the generate I1, I2, . . . Ik. We want to show that they generate Ik+1. Pick
f ∈ Ik+1. Then f is in an ideal J , so f = a1i1+a2i2+ · · ·+anin for some an ∈ C[x1, . . . , xn]
with deg(ai) > 0.

Apply the Reynolds operator. Then

ρ(f) = ρ(a1)i1 + ρ(a2)i2 + · · ·+ ρ(an)in

because f is invariant. So deg(an) < K as deg(in) > 0, so ρ(an) is a polynomial in i1, . . . , in
by induction. So f is a polynomial in i1, . . . , im.

4Professor Borcherds showed us an invariant where the first generator took 13 pages to write out.
Someone in the 19th century had a lot of spare time.

5Reynolds actually studied fluid dynamics. He showed that fluid flow averaged over time was a group.
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The following example illustrates the reason we need to be careful about showing that
i1, . . . , ik generate I.

Example 1.6. Let R = C[x, y], and take the subring containing the ideal generated by x
and 1. This subring is not finitely generated as a ring.

Example 1.7. LetG = Z/nZ act on C[x, y]. Suppose thatG is generated by σ, where σn =
1. Let σ(x) = ζx and σ(y) = ζy, where ζ = e2πi/n. The ring of invariants is the polynomials
with all terms of degree 0, n, 2n, . . . . A set of n+ 1 generators is xn, xn−1y, xn−2y2, . . . , yn.
If we call these an, an−1, . . . , a0 respectively, there are many relations between the ai. For
example, anan−2 = a2n−1.

Are the collection of syzygies finitely generated? Yes. The ring of invariants is given
by a polynomial ring in generators a0, . . . , an mod the ideal of syzygies. So the ideal of
syzygies is finitely generated by Hilbert’s theorem.
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